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1. INTRODUCTION 

A solution concept from game theory which has been used a lot in economic 
applications is the noncooperative solution or Nash equilibrium [lo]. While 
much of the theory is concerned with static models, there has recently been 
an increasing interest in dynamic game-theoretic models. Noncooperative 
equilibrium solutions to nonzero-sum discrete-time dynamic games were 
discussed in detail in [5], and several references to literature on differential 
games can be found there. Two different noncooperative solutions were 
discussed. The open-loop solution is a sequence of decisions for each time 
period, and these decisions all depend on the initial state, and, in the presence 
of uncertainty, on observed disturbances. In a recent paper, Brock [I] has 
studied open-loop solutions for a wide class of models. In the feedback (or 
closed-loop) solution, on the other hand, decision rules are determined for 
each time period as functions of the most recent state variables at that time. 
In [5] these solutions were evaluated as possible candidates for an equilibrium 
concept in economic models. 

One area in which game theory has been extensively applied is oligopoly 
theory. Here too the models have been mainly static, or sequences of static 
models, for a large part in the spirit of Cournot [3]. Exceptions are [2, 1 l] in 
which dynamic models with structural interconnections over time were 
analyzed. Besides the purely noncooperative solution, there is another 
solution which has a long tradition in oligopoly theory, namely the dominant- 
firm solution dating back as far as Stackelberg’s [13] book in 1934. When 
making its decision, the dominant firm takes account of the reactions of its 
rivals. Computations of feedback solutions for a dominant-player model with 
quadratic objective functions and linear constraints were outlined briefly in 
[5]. Possible applications of dominant-player models, other than in industrial 
organization, are models of macroeconomic stabilization in which the 
government may act as a dominant player. 

In this paper we discuss dominant-player models in considerable detail. We 
shall be concerned with equilibrium solutions in the sense that, given the 
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other players’ decisions, no player will change his decision rule. We men- 
tioned above that in the dynamic noncooperative games in [5] the closed-loop 
and feedback solutions1 were the same. In the dominant-player case they will 
in general be different. We therefore have three possible candidates for an 
equilibrium concept, viz., open-loop, closed-loop, and feedback solutions. 
Both closed-loop and feedback decision rules are functions of the current 

state variables for the respective time periods. However, the closed-loop 
decision rules for the dominant player are assumed to be determined (and 
committed to) at time zero for all time periods of the horizon. The feedback 
solutions, on the other hand, can be thought of as being announced for the 
dominant player for one period at the time, given the state variables at that 
time, and rationally expecting equilibrium decisions to be made in future 
periods on the basis of the information at that time. 

In Section 2 the three types of solutions are compared in fairly abstract 
terms from an equilibrium point of view. The difficulty with the open-loop 
and closed-loop solutions is that it is in general not optimal to carry through 
with the original plans. The feedback solution has the desirable characteristic 
that the plans are intertemporally consistent. In Section 3 we give details of 
the computations of dominant-player feedback solutions for linear-quadratic 
stochastic games. Extensions to more complicated hierarchical structures 
are indicated. Such structures may be of particular interest in oligopoly 
models. 

The fact that the dominant player announces his decisions first is likely to 
mean that he has to base his decisions on less accurate information than the 
rivals can. For example, the actual values for the current period of some of 
the disturbances in the structural equations may be available only to the 
nondominant players, or the dominant player may have to base his decisions 
on preliminary data for the state variables that are subject to measurement 
errors which have been corrected by the time the nondominant players act. 
In Section 4 we outline solutions for a case like that, and find that some 
decision rules then turn out to be stochastic in some sense. The paper ends 
with some concluding comments in Section 5. 

2. DYNAMIC EQUILIBRIUM SOLUTIONS 

For the purpose of the general discussion of possible equilibrium concepts 
we shall use a somewhat more general and compact notation than what is 
used in later sections, although it is understood that the objective functions 
will be quadratic and the structural equations linear. For simplicity and 

’ A distinction between these two solution concepts is seldom made. See, however, 
Simaan and Cruz [12] and Tse [14]. 
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without much loss of generality we assume that each player has control over 
one instrument. Then we can write the structural equations as follows: 

J’t =fo11-1 v Xt 3 Et)r (1) 

where J‘[ is an nz x 1 vector of state variables, sf is an 12 ;; 1 vector of decision 
variables or instruments, with m > n, and l t is a vector of disturbances which 
are independently distributed over time with mean zero and finite variances. 
Each player i wishes to minimize a preference (or loss) function 

where E denotes an expectations operator. We assume that dependence of the 
objective functions on decision variables or changes thereof as well as the 
inclusion of lags in the structural equations have been taken care of by 
expanding the state vector as explained in [5]. 

Player i has control over xi only, and he has to take into consideration 
what the other players do. The decision variables of the other players at time 
t will be denoted by XV’ = (xlt ,..., Xi-I,( , .x~+~,( ,..., x,J. Player n will be the 
dominant player. 

By an equilibrium solution we intuitively mean a solution such that, given 
what the other players do, no player will change his decision rule. We shall 
first look for solutions in policy space, with decision rules being sequences of 
the form -[Xit(yfwl , x,,)>L, , i =-= l,..., IZ - I, and {X,,(y,-,)>%, . 

DEFINITION. An equilibrium for each time period r, t = I ,..., T, is a set of 
decision rules xit = xit(y,-, , x,~), i = l,..., n ~ I. and x,~ = X,,(y& 
such that 

m,in E[Jv~~( yt) + L:~.~~.~( yl)l Xj”] 

= E[l~,,(Yt) + l.i.t+1(Yt)I x,1. i = I,..., tl, 

where 

t’i,,~lo’t) = E ; 
L 

lt’is(Ys)i S,is = Xj,d J’s-1 , x,,), j = I,..., I? - I, 
s=t11 

x ns = x,,q(~.,-l), s = t $- I,..., T 1 . 

We note that in the definition above v. L ,1+1( yf) is the total value for player i of 
the sequences of dominant-player solutions from time period t + 1 until the 
end of the horizon. The definition thus says that each player chooses the best 
decision rule for period t, given the last observed values of the state variables 
y,-, , the decision rules of the other players, and that decisions will be 
similarly selected in periods I + I,..., T. 
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We shall now outline how the solution for period t can be computed. As a 
first step, we find for i = I,..., II - 1 

f’it(~t.-1 , -‘it!)) == “3;; E[1~,,t(,,t> + c,t.dyt)l (2) 

subject to (l), and given yt-r and at . *G) The solution for each of the nondomi- 
nant players (under conditions to be given in Section 3) is a function of 
yt-l and xt (‘) derived from the first-order condition for a minimum. If these 
II - 1 players behave noncooperatively among themselves, we can (again 
under conditions to be specified later) solve for 

Xit E Wit(Yt-l 9 Xnth i= 1 )...) n - 1. (3) 

For the dominant player the problem is to solve 

subject to (1) and (3), and given ytM1 . The optimal decision rule will be of 
the form 

X nt = XdYt-1). (4) 

The decision rules given by (3) and (4) will clearly satisfy the definition of 
equilibrium. Finally, using (3) and (4) we can write Vi, in (2) as 

fit(ytml) = 1’. (y _ P’) 1t t1r t 9 i== 1 )...) n - 1. 

The solution outlined above is the feedback solution. The decision rules 
are obtained by working backward recursively from period T until the initial 
period. An alternative would be for the dominant player to look at the 
horizon as a whole and determine the set of decision rules {X$(yt-,)}~=, that 
gives the lowest value of W, while taking account of the rivals’ reactions. 
This would be the closed-loop solution. However, even for the linear- 
quadratic case in which XA, are linear, the computation of the closed-loop 
solution for a finite horizon is quite complicated and leads to a highly 
nonlinear problem. If the horizon is infinite, with Wit( yt) = ~~-‘wi(yt), where 
/3i is a discount factor such that 0 < pi < 1, the decision rules will be the 
same for every period, and a search over the coefficients of the stationary 
X,c(yt-,) can be carried out. 

A third solution alternative is to look for the sequence (xnt}TG’=, of values of 
the decision variables that minimizes W, given the rivals’ reactions. This 
sequence will depend on y,, and, in the presence of uncertainty, on observed 
disturbances. We now outline briefly how this open-loop solution can be 
obtained. 
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To determine the reactions of the nondominant players we consider the 
problem for player i, i = l,..., n - 1, which is 

t,i$y.jf; E [ il “.ir(Yr)] 

subject to 

?'t =hCv, 2 -Yl 3..'? .Yt > Cl ,'.., %I, t = I,..., T, (5) 

J’o ) xy , ..,, s(T) given. 

The functions ff , t = l,..., T, are obtained by successive iterations of the 
original function $ 

From the first-order conditions, and assuming that the nondominant 
players behave noncooperatively among themselves, we get under appro- 
priate conditions decision rules of the form 

xCn’ t =gjqy,,s 1 A ,..., X,T 9 El ,..., 43 t = I,..., T, (6) 

where xi”) = (x It ,..., x,-& and correspondingly for g{“). 
The problem for the dominant player is to 

subject to (5) and (6), and given y,, . The solution to this minimization problem 
will be of the form 

-%t = grid Y, > El ,.a*, 4~ t = l,..., T. 

Thus, the open-loop decisions are given by (6) and (7). 

(7) 

Just as the feedback solution obviously satisfies our definition of equili- 
brium, it is equally apparent that the open-loop and the closed-loop solutions 
in general do not. One might ask at this point whether it is possible to think 
of definitions of equilibrium that either of these solutions would fit. This 
is clearly possible, and we therefore have to make an argument as to why this 
definition would be less likely as a good description of how an economic 
system would operate in practice. 

Looking at the horizon as a whole, it is clear that both the open-loop and 
closed-loop solutions give lower value of the dominant-player loss function 
than the feedback solution does. Note that in all three solution concepts the 
decisions of the nondominant players at time t depend on what the dominant 
player is expected to do not only in period t, but also in periods t + l,..., T. 
In the open-loop case this is clearly seen in Eq. (6). In the closed-loop and 
feedback solutions the coefficients of the decision rules X,,( ytW1, x,3 will 
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depend on the expected decisions of the dominant player in periods 
t + l,..., T. To make this clear, we could write Xit(ytwl , x,,; Xn,t+l ,..., XnT) 
for the feedback case, and X~C,(JJ~-~; Xi1 ,..., Xi,) in the closed-loop case. 

What makes the value of the solution inferior in the feedback case is the 
fact that the dominant player does not take into account at time t the effect 
his decision for that period t has on his rivals’ decisions in periods s < t. To 
see this more clearly, assume that the problems can be written in terms of the 
decision variables only, and that there is no uncertainty. The dominant- 
player problem would be to 

subject to 

minimize 1 u~,,~(.Y~) 
-sl~...Azl‘ t-1 

xii = Xit(xnl ,..., xnT), i = l,..., II - 1; t = l,..., T. 

The first-order conditions for a minimum are 

t :y I,..., T. (8) 

However, if x1 ,..., xtPl are taken as given at time f, then the first-order 
conditions will be 

t = I,..., T. 

The difference from (8) is 

which in general will be different from zero. Only if aX,Jax,, = 0 for all 
s < t could we be assured of this term being equal to zero. 

We also realize something else from the demonstration above. If the 
problem is reevaluated for the remaining T - k periods of the horizon after 
the first k periods have elapsed, we see that the conditions for an optimum 
from then on are 

2 + i+, ;$I 2 2 = O, t = k + l,..., T. 

Again there is a difference from (8), 
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which in general will be different from zero. This means that the original plan 
is no longer optimal from that time on. Faced with this fact, one would 
expect a great temptation on the part of the dominant player to change his 
original plan. Only the feedback solution has the characteristic that the 
original plan will not be changed under replanning. Note that this argument 
does not depend on the presence of uncertainty in the model. 

If the dominant player tries to carry out a closed-loop policy, say, but 
continually gets tempted to change his policy when the state changes, then 
there is no reason to get the expected outcome even in the first period. If the 
rivals come to expect policy changes, presumably this will affect their behavior 
from the start. 

In practice economic agents are not likely to consciously carry out all the 
extremely complicated calculations required to find the solutions we have 
presented. Rather, the equilibrium solution is meant to indicate the path that 
an economic system would follow on the average, or converge toward as 
agents are learning more about how other agents behave, and correcting 
whatever errors they have made in the past. Thus a definition of equilibrium 
would not be of much use unless it implies a solution which is stable in the 
above sense. We have explained why the feedback solution is likely to be 
stable, while the open-loop and closed-loop solutions are not. 

To sum up, there appear to be strong reasons to believe that the feedback 
solution is the one likely to give a good description of the movement of an 
economy with a dominant player. One might wonder if the open-loop or 
closed-loop solutions would provide a better description if the dominant 
player were the government. This does not seem likely, however, in particular 
not when an election draws near, or a new administration takes over. This 
comment suggests that a combination of the feedback solution with either 
open-loop or closed-loop solution for 3 or 4 years at the time might provide 
a reasonable description of how a government would operate. 

Before giving a numerical example, we shall comment briefly on the infinite 
horizon problem. For this case we would presumably have w&J = pi-’ 
Wi( yJ, i = l,..., IZ. The equilibrium feedback solutions would be stationary 
decision rules of the form xi = wi(y-, , x,) and X, = X,(v-J satisfying the 
functional equations 

vh-, , x.,1 = yin E[w,(.Y) + /3i2~i(~)lr i = I,...,,? - 1, 

and 

r,Jy-J = rn$ E[Iv,(J) + /3n~n(y)I si = Xi(yel , x,), i = l,..., II - I], 

with 
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and all subject to y = f(y-, , x, E). For the linear-quadratic case, successive 
approximations, which are easily computable, have usually turned out to 
converge rather quickly. 

For this case with stationary decision rules, assume that the players 
initially do not know for sure the decision rules of the other players. Using 
his best estimate each player computes the best decision rule, given what he 
thinks the others will do. When the actual decision rules turn out different 
than expected, the expectations are revised. There are as usual several 
possibilities, the most naive of which is static expectations, which in this 
context means that the players expect the other players to behave in the 
future according to the last decision rule. Another possibility is adaptive 
expectations formation. If the system is stable, such a process will converge to 
equilibrium decision rules such that no player has any incentive to change his 
decision rule. From what was said above, it is clear that only the feedback 
solution could be stable in this sense. Such processes were discussed for the 
purely noncooperative case in [6], and in the context of a dominant-firm 
model in [7]. 

To illustrate some of the points of this section, a numerical example will be 
presented. Assume that the functions to be maximized are 

wi = $” ii&!’ Kl - 4'1t - .Yd Yif - 4-Q - Cc% - hm, 

subject to yi,t+l = (I - 6) yit + xii , i = I, 2. This is a simplified version of 
an oligopoly model used in [7]. The variables xi and yi can be interpreted as 
investment and capital stock, respectively, for firm i. Output is constrained 
by capital stock, and units are chosen so that one unit of output requires one 
unit of capital. The industry faces a linear demand curve (which can be 
thought of as being adjusted for any constant unit production costs). There 
are constant returns to scale in the long run, but changes in capacity are 
subject to increasing cost of adjustment. Future profits are discounted using 
the interest rate Y. The rate of depreciation is denoted by 6. 

In the present example we shall use the values r = 0.1, 6 = 0.1, q -= 1, and 
c = 2. The horizon T is chosen long enough for the solutions to approximate 
closely those of an infinite horizon. Tn comparing the three types of solutions 
we shall concentrate on the decision rules and profits of the dominant firm 
(firm 2), the stationary capital stocks, and whether or not these stocks are 
stable under replanning. In order to make these comparisons, we also need 
initial values of the capital stocks. We shall use JJ,~ = (0, 0.4), meaning that 
firm 1 is just entering an industry in which firm 2 had a monopoly, or, 
alternatively, ~1”~ = (0.2, 0.4), which is the steady state for the open-loop 
solution, and also the solution of the static problem without cost of adjust- 
ment. 
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In Table 1 the total profits for the dominant firm are listed for the three 
solutions. 

TABLE I 

Initial state Dominant-firm profits 

?‘I0 YlO 

0 0.4 
0.2 0.4 

Feedback 
__.- ~- 

1.379 
1.225 

Open loop 

1.475 
1.322 

Closed loop 

2.152 
I .840 

The feedback decision rule for the dominant firm is 

.Y$f = -0.1030!‘I, - 0.3188y,, + 0.1635 

for all t, with the resulting steady state off = (0.2633, 0.3257). 
Tn the open-loop case the first-period decision as a function of ~5~ (the 

decisions for all periods are functions of y,,) is 

xqg = -0.1004~,, - 0.3208y2, + 0.1683, 

and the steady state is ~1: = (0.2,0.4). Note, however, that if we start out 
with ~3~ = vz , then yzt will drop to 0.3799 in the first period and 0.3767 in 
the second period, with ylt increasing to 0.2047 and 0.2073, for then slowly to 
move back toward v”, again. Thus, the original plan is not optimal under 
replanning. 

The dominant-firm closed-loop decision rule when the initial state is ?I,,” is 

.Y.Lt = 3.1~‘~~ + 0.13~~~ --- 0.0385, 

with steady state (0.0085, 0.4079). Tf the initial state is .rUB, the closed-loop 
decision rule is 

s - 0.5~~~ + 0.13~~,, -- 0.038, 2t ~ 

with resulting steady state (0.0620, 0.2329). This illustrates the fact that the 
coefficients of the closed-loop decision rule, and also the resulting stationary 
solutions, depend on the initial state. 

We note that the nature of the closed-loop decision rules is quite different 
from the other two solutions. Effectively, if the dominant firm threatens to 
meet any increases in the rival’s capacity by substantial increases in his own 
capacity and the rival accepts this as given, then the dominant firm can force 
the rival to a very low market share. However, in practice it is unlikely that 
this would be the end of the story. For a more extensive analysis of this 
particular problem, see [7]. 
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3. THE LINEAR-QUADRATIC FEEDBACK SOLUTION 

We now turn to the linear-quadratic case and shall assume that the loss 
functions can be written asa 

and the structural equations as 

We assume that et, t = I,..., T, are identically and independently distributed 
over time with mean zero and finite covariance matrix .C?. 

The value functions, which will turn out to be quadratic, will be written as 

Define the notation: 

where z,, = Qi + PiSi,t+I, pit = yi + piri.l+I, and bi is column i of the 
matrix B. Also, let Ben) = [b, ,..., b,-,] and ,Y\~) = (xIt ,..., xn-rJ’. Thus, 
superscript (n) on a matrix or a vector means that the last column or the last 
element, respectively, have been deleted. Then we can prove the theorem: 

THEOREM 1. Assume that 

(i) bi’zii,bf > 0, i = l,..., n -- 1; t = l,..., T, 

(ii) ~ ZZtB(“)I # 0, t = l,..., T, 

(iii) b,‘[Z - B(lL)(HtB(“))-l H,]’ z‘,,[Z - B(“)(HfB(7L))-1 HJ b, 12 0, 
t = I,..., T. 

The unique equilibrium solutions for each period t, t = l,..., T, can then be 
computed recursively: 

2 A discussion of the generality of this formulation can be found in [5, p. 3241. 



DYNAMIC DOMINANT-PLAYER MODELS 317 

where 

Writing the decision rules on the form 

where 

D = Gt + w&t 
t [ d I and 

nt 
8, = t” yy”“] ) 

the coqj5cient.s of the value functions vit for the n players are determined by the 
recurske relations 

with Si,r+l , ri,T+l , and VisTfI all being zero, 

Proof. It is easy to show that each uit is quadratic if all v~,~+~ are quadratic. 
The functions v~,~+~ are the null function and therefore trivially quadratic, so 
all zlit are quadratic by induction. 

Assume that v~,~+~ has been found by backward induction for all 
i, i = I..... n. Then we can write 

Differentiating the right-hand side, we get the first-order conditions: 

bi’pit + bi’Zi,(Ay,-, + Bmut + C) = 0, i ~‘1 )...) n - 1. 
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By assumption (i) these conditions are also sufficient for a minimum for 
each of the players. By assumption (ii) we can solve this system of n - 1 
equations for xin) to get: 

(n) 
Xt = Go’*--l + TtXnt + yt > 

where Gt, qt, and yt are defined as in the theorem. 
For the dominant player we write 

subject to (10). A necessary condition for a minimum with respect to xnt is: 

(b, -t Bin+,)’ Z&4 + Ben’ G,) ~t-~ + (b, + B’“‘Q) xn< + c i- B’n’y,] 

+ (b, + B%jJ’ pnt = 0. 

By assumption (iii) this condition is also sufficient for a minimum. Solving for 
-Y,~ we get: 

X,f = 4dYt-1 + %Lt 2 (11) 

with rf,, and 6,t defined as in the theorem. Substituting (11) into (10) we can 
write 

xt :_ D,y,.el + 6, , 

with D, and 6, defined in the theorem. We can also write 

(12) 

OdYt-I) = vit(Yt-1 , &t i X,t = 4tYt-1 + &A i = l,...,IZ - 1. 

Substituting (12) into the value functions, we get both the left-hand sides and 
the right-hand sides in terms of )‘[-I . Comparing the coefficients for the 
second-degree term, the first-degree term, and the constant, respectively, we 
get the recursive relations for Si,, rit , and vit , i = I,..., n. This completes 
the proof. 

Assumption (i) is rather weak because it can be satisfied for player i even if 
some diagonal elements of Qi are negative, that is, Qi need not even be 
positive semidefinite as is usually required in the standard control problem for 
one decision maker. 

The implications of an assumption like (ii) have been thoroughly discussed 
in [5]. Assumption (iii), on the other hand, is special for the dominant- 
player problem. It can be shown that there are games, the payoff functions of 
which are quadratic with respect to the strategies, for which there is no 
equilibrium in the purely noncooperative case, but there may still be a 
dominant-player equilibrium. Moreover, the dominant-player solution 
always exists if only the payoff functions are negative definite with respect to 
the strategies. 
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For the infinite-horizon case the computations of successive approxima- 
tions using value iterations would be similar to the computations given by 
the theorem, that is, going from one iteration to the next would be the same 
as going from period t + 1 to t in the theorem. Numerical examples have 
shown the successive approximations to converge rather quickly, in particular 
for the coefficients Si of the quadratic parts, which are sufficient to determine 
D (or G, 7, and d,,) regardless of ri and vi , i = I,..., II, and 8 (or y and 6,). 
Note that each yi is a linear function of 6, while 8 is a linear function of 
ri, i-1 ,..., n. Computationally, this means that one can carry out the 
approximation only for Si , i = l,..., n, and D. Then the result can be used to 
determine ri , i = I,..., n, as linear functions of 8, which are then substituted 
into the expression for 8, thus determining 6, which again determines ri , 
i =: I ,...) II. Finally, simple calculations will give us vi , i = I,..., n. 

When the equilibrium stationary decision rule, x = DyeI + 6, is substi- 
tuted into the structural equations, we get 

which leads to the mean for the stationary solution: 

y” = [I - (A + BD)]-l (B6 + c). 

Given the assumption on E, we can compute the covariance matrix of y*, say 
A, by solving 

cl=(A+BD)Lt(A+BD)‘+Q. 

This equation can be solved for the symmetric matrix II as described in 
[5, p. 3331. 

In this paper we are restricting ourselves to the case of one dominant 
player and n - 1 noncooperative rivals. This particular assumption on the 
hierarchical structure could easily be relaxed. In general, we could have 
several hierarchical levels, each with a number of noncooperative players 
who take into account the reaction functions of the lower-level players 
while taking as given the decisions of the higher-level players. An interesting 
special case would be the one in which the n players all are on different levels. 
In an oligopoly, for instance, such a hierarchical structure would lead to an 
equilibrium in which the firms would all have different market shares in 
spite of having the same cost structure. 

4. A CASE OF PARTIALLY DELAYED INFORMATION 

In some economic situations for which the dominant-player model may 
be appropriate, there may be a certain disadvantage to being dominant that 
is not taken account of in the solutions described in Sections 2 and 3. This 
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disadvantage may be due to the fact that, for example, for institutional 
reasons, the dominant player has to make and announce his decision before 
certain data are known, while the same data may be known by the time the 
rivals make their decisions. For instance, in a model similar to the one 
described in [S] in which the government is dominant in determining the 
investment tax credit, while the private sector decides on how much to invest, 
the demand conditions for the period at hand may have become known by 
the time private firms make their decisions. Examples of economic models in 
which information lags are crucial, can be found in Cyert and DeGroot 
[4] and Lucas [9]. 

In this section, then, we shall outline the solution to a two-player linear- 
quadratic model in which the nondominant player knows the outcome of 
the disturbance et when making the decision for period t, while the latest E 
known to the dominant player is et-I . The error term could, for instance, 
appear in an autoregressive equation determining a parameter of a demand 
curve. 

Using for a moment the notation of Section 2, we can first explain in 
fairly general terms what will happen. The equilibrium (feedback) solutions 
for the two players will be two sequences of decision rules of the form 
{XldY&l 2 X2t 2 %Kl and {X2,(yt-J}~=, , where player 2 is dominant. Cor- 
responding to these decision rules we can define value functions oit , i = 1,2, 
that give the value for each player of following the decision rules from period 
f until the end of the horizon. These value functions will satisfy the functional 
equations: 

where Et+I denotes an expectations operator, the expectation being taken 
with respect to the distribution of E~+~ , and 

~,t(Yt-1) = In,‘e m~~,(YJ + 152~‘2,t+h)l X1t = ~ldY,-1 , X2t 9 41, 

both subject to (9). 
We see that the problem formulation for the dominant player is as before, 

except that in equilibrium he foresees how the decisions of player 1 depend on 
the disturbance terms. Player 1, on the other hand, knows yt with certainty 
when deciding on xlt , and to him there is only uncertainty with regard to 
future disturbances, the expected influence of which is taken into account in 
his value function. 

The computations of equilibrium decision rules and value functions for 
period t will now be outlined. We assume that the value functions ~)r,~+~ 
(Yt 3 E t+l) and v,,t+I(yt) have been determined by backward induction. It is 
easy to see that these functions will be of the form: 
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l'1,t+1 ( Yt > Et+1) = %,t+1 -k r;,t t1J't i- 2 Yt'&,t+1Yt + &+1~t+1 

-t yt'Lt+1+ 1 -t 34+l~t+l%+l f 

"2,t,.1(4't) = Y&t+1 + r&,+ot -L i Y~'S,,~~~~ yt . 

Consider now the problem facing player 1. His decision rule is found by 
solving 

r:tc Yt-1 7 x2t 3 4 

+ WY,-, + Bxt + c + 4’ &(AY,-, + Bxt + c + 4). 

From the first-order condition we get a decision rule of the form 

X1t - gtyt-1 i ?)&a + wt + yt 2 (13) 

the coefficients of which are computed as in Theorem 1, except for the row 
vector ut , which is given by 

zft = - [b,%,,b,]-l b,‘& . 

Player 2, taking account of this decision rule, determines 

~2t(yt-I) = Fjtn &[~~~2(.h) + P2ktilC.dl, 

subject to (9) and (13). From the first-order condition we get: 

(14) 

where d,, and S,, are given by Theorem 1. 
Using (14) we can write (13) as 

xIt = (gt + w&)Yt--l + wt + (rt + +zt) 
= dlty,-, + zitet $- a,, . 

Substituting the equilibrium decision rules, the structural equations can be 
written as 

yt = (A + BD t) yt-1 + (Bh + c) + (I + b,ut) Et , (1% 

where Dt = [rl;, , d;,]‘, 6, = (6 6 )’ It , 2t , and I is the m-dimensional identity 
matrix. Substituting from (15) into the value functions ult( ytml , .Q) = 
V,t(Yt-1 3 X2t > Et I %t = d2tyt--l + S,,) and UZt(y& and comparing coeffi- 
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cients, we find that the recursive relations for Si, and rit , i = 1, 2, are the 
same as in Theorem 1 9 while the remaining coefficients are given by: 

Vlt = [f%t + !$rAB~, + c)]’ @St T c) + /J[v~,~+, + i:- trace(W,+,Q)], 
4 trace[(l + b,u,)’ &(1 L b4) J-4 v2t = Ipi: &t(~& + c)]’ (BS, + c) -t 

zv2,t+1 2 

w = (I + b,u,)' &:,,(Z + b,u,), 

Lt = (‘4 t- BDt)‘&O + b,u,), 

ft = ht + z;tm + 41' (I + b,u,). 

We have thus ended up with equilibrium decision rules for a model in 
which there is a difference in the amount of information available to the 
players when making their decisions for a given time period. In models where 
there is no clear institutional reason why one firm is dominant or not, and in 
which the nondominant role makes the firm worse off than under the non- 
cooperative solution, this possible difference in the amount of information 
may make the nondominant role more acceptable. 

It is interesting to note that, from the point of view of the dominant player, 
the decision rule of the nondominant player is stochastic. Even if he knows 
the decision rule of his rival, he will not know for sure what the outcome 
will be. 

For the infinite-horizon problem the stationary decision rules would be of 
the form 

and 

Xl = 8.L1 + TX2 + y + UC, 

x1 = &?.I-1 + 6,. 

The mean of the stationary solution is the same as in Section 3, while the 
covariance matrix A for the stationary solution y* now can be found by 
solving 

n = (A + BD) 44 + BD)’ + (I + bp) Q(Z + b,u)‘. 

5. CONCLUDING COMMENTS 

In this paper we have argued that operational characteristics of economic 
models, and in particular stability considerations, point strongly toward an 
equilibrium concept for dynamic dominant-player models which implies that 
the players determine their best decisions depending on the current state of 
the system and the decisions of the other players, and rationally expecting 
that equilibrium decisions will be chosen in the future. This solution is called 
the feedback solution. Unlike two alternative and different solutions it has 
the property that the original plan is consistent under replanning. The 
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difference between the solutions in this regard does not depend on the presence 
of uncertainty. Because of this property, the feedback solution is the only one 
that seems likely to be stable in the sense that decision makers groping for 
equilibrium decision rules will converge on these decision rules. In equili- 
brium. expections are self-fulfilling in the sense that the expected decision rules 
of the other players are actually the ones being used. One might go on by 
studying processes in which these equilibrium rules, if the system is stable, 
would be the end result of an iterative scheme of expectations formation 
with regard to decision rules. Using analytical methods, or, since the models 
are rather complex, computer simulations, one could get an idea of the 
robustness of the models with respect to various ways of forming such 
expectations, for instance, adaptive expectations. Attempts in this direction 
have been made in other contexts (see [6,7]). 

We have also pointed to other problems in need of further research. We 
have barely touched upon the infinite-horizon problem. Typically the life of 
the economy is not finite, and even when the horizon is finite but long, the 
first-period solution is usually very close to the stationary decision rules for 
the infinite-period problem. General conditions for existence and uniqueness 
of infinite-horizon feedback solutions remain to be developed. 

We believe that the theory presented in this paper provides a useful 
framework for studies of various economic problems. This type of model, 
possibly with the generalization to more complex hierarchical structures, 
appears particularly promising for attempting to explain certain stylized facts 
of industry structure, and work is currently being done in that direction. The 
possible application to problems of public policies should also be mentioned. 
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